opencm3-ex/serplus/serplus.c
2018-01-28 10:16:40 +00:00

1095 lines
28 KiB
C

/* {{{ LICENSES
* Original serplus code by jcw https://github.com/jeelabs/embello/tree/master/explore/1649-f103/serplus
* Modified for F072 by flabbergast
*/
/*
* WS2821 code originally from https://github.com/hwhw/stm32-projects
*/
/*
* This code is derived from example code in the libopencm3 project:
*
* https://github.com/libopencm3/libopencm3-examples/tree/master/
* examples/stm32/f1/stm32-h103/usart_irq_printf
* and examples/stm32/f1/stm32-h103/usb_cdcacm
*
* Copyright (C) 2009 Uwe Hermann <uwe@hermann-uwe.de>,
* Copyright (C) 2010, 2013 Gareth McMullin <gareth@blacksphere.co.nz>
* Copyright (C) 2011 Piotr Esden-Tempski <piotr@esden.net>
* Copyright (C) 2016 Jean-Claude Wippler <jc@wippler.nl>
*
* This code is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this code. If not, see <http://www.gnu.org/licenses/>.
* }}} */
// {{{ software configuration
#define HAVE_MODES
#define HAVE_ADC
#define HAVE_NEOPIX
// }}}
// {{{ includes
#include <stdlib.h>
#include <string.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/crs.h>
#include <libopencm3/stm32/dma.h>
#include <libopencm3/stm32/timer.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/systick.h>
#include <libopencm3/usb/usbd.h>
#include <libopencm3/usb/cdc.h>
#include <libopencm3/stm32/adc.h>
// }}}
// {{{ global variables
#define BUFFER_SIZE 256
struct ring input_ring, output_ring;
uint8_t input_ring_buffer[BUFFER_SIZE], output_ring_buffer[BUFFER_SIZE];
volatile uint32_t ticks;
uint8_t extbut_state, extbut_laststate, extbut_changed, extbut_acted;
uint32_t extbut_time, extbut_lastchange;
#ifdef HAVE_MODES
volatile uint16_t usart_mode; // messes up the USB driver if it's uint8_t
#endif // HAVE_MODES
volatile uint32_t usart_serplus_baudrate, usart_serplus_databits, usart_serplus_stopbits, usart_serplus_parity, usart_serplus_flowcontrol;
// }}}
// {{{ ringbuffer
/******************************************************************************
* Simple ringbuffer implementation from open-bldc's libgovernor that
* you can find at:
* https://github.com/open-bldc/open-bldc/tree/master/source/libgovernor
*****************************************************************************/
typedef int32_t ring_size_t;
struct ring {
uint8_t *data;
ring_size_t size;
uint32_t begin;
uint32_t end;
};
#define RING_SIZE(RING) ((RING)->size - 1)
#define RING_DATA(RING) (RING)->data
#define RING_EMPTY(RING) ((RING)->begin == (RING)->end)
static void ring_init(struct ring *ring, uint8_t *buf, ring_size_t size)
{
ring->data = buf;
ring->size = size;
ring->begin = 0;
ring->end = 0;
}
static int32_t ring_write_ch(struct ring *ring, uint8_t ch)
{
if (((ring->end + 1) % ring->size) != ring->begin) {
ring->data[ring->end++] = ch;
ring->end %= ring->size;
return (uint32_t)ch;
}
return -1;
}
static int32_t ring_write(struct ring *ring, uint8_t *data, ring_size_t size)
{
int32_t i;
for (i = 0; i < size; i++) {
if (ring_write_ch(ring, data[i]) < 0)
return -i;
}
return i;
}
static int32_t ring_read_ch(struct ring *ring, uint8_t *ch)
{
int32_t ret = -1;
if (ring->begin != ring->end) {
ret = ring->data[ring->begin++];
ring->begin %= ring->size;
if (ch)
*ch = ret;
}
return ret;
}
static int32_t ring_read(struct ring *ring, uint8_t *data, ring_size_t size)
{
int32_t i;
for (i = 0; i < size; i++) {
if (ring_read_ch(ring, data + i) < 0)
return i;
}
return -i;
}
// }}}
// {{{ clock setup
static void clock_setup(void)
{
rcc_clock_setup_in_hsi_out_48mhz();
crs_autotrim_usb_enable();
rcc_set_usbclk_source(RCC_HSI48);
// for gpio, usart
rcc_periph_clock_enable(RCC_GPIOA);
rcc_periph_clock_enable(RCC_GPIOB);
rcc_periph_clock_enable(RCC_USART1);
#ifdef HAVE_NEOPIX
// for WS2812 (pwm/dma)
rcc_periph_clock_enable(RCC_TIM3);
rcc_periph_clock_enable(RCC_DMA);
#endif // HAVE_NEOPIX
#ifdef HAVE_ADC
// ADC
rcc_periph_clock_enable(RCC_ADC);
#endif // HAVE_ADC
}
// }}}
// {{{ gpio
// Bat Board
#define LED_GPIO GPIOA
#define LED_PIN GPIO15
#define LED_ON gpio_set(LED_GPIO, LED_PIN)
#define LED_OFF gpio_clear(LED_GPIO, LED_PIN)
#define LED_TOGGLE gpio_toggle(LED_GPIO, LED_PIN)
#define BOOTBUT_GPIO GPIOA
#define BOOTBUT_PIN GPIO1
#define BOOTBUT_PRESSED (gpio_get(BOOTBUT_GPIO,BOOTBUT_PIN)!=0)
#define EXTBUT_GPIO GPIOA
#define EXTBUT_PIN GPIO6
#define EXTBUT_PRESSED (gpio_get(EXTBUT_GPIO,EXTBUT_PIN)==0)
#define FET_ON (gpio_clear(GPIOB,GPIO3))
#define FET_OFF (gpio_set(GPIOB,GPIO3))
#define RTS_GPIO GPIOB
#define RTS_PIN GPIO11
#define DTR_GPIO GPIOB
#define DTR_PIN GPIO10
static void usart_dtr_rts_serplus_setup(void) {
gpio_mode_setup(DTR_GPIO, GPIO_MODE_OUTPUT,
GPIO_PUPD_NONE, DTR_PIN); // serplus: dtr: default high
gpio_set(DTR_GPIO, DTR_PIN);
gpio_mode_setup(RTS_GPIO, GPIO_MODE_OUTPUT,
GPIO_PUPD_NONE, RTS_PIN); // serplus: rts: default low
gpio_clear(RTS_GPIO, RTS_PIN);
}
#ifdef HAVE_MODES
static void usart_dtr_rts_raw_setup(void) {
gpio_mode_setup(DTR_GPIO, GPIO_MODE_OUTPUT,
GPIO_PUPD_NONE, DTR_PIN); // serplus: dtr: default high
gpio_set(DTR_GPIO, DTR_PIN);
gpio_mode_setup(RTS_GPIO, GPIO_MODE_INPUT,
GPIO_PUPD_NONE, RTS_PIN); // serplus: rts ignored: floating
}
#endif // HAVE_MODES
static void gpio_setup(void) {
gpio_mode_setup(LED_GPIO, GPIO_MODE_OUTPUT,
GPIO_PUPD_NONE, LED_PIN); // bat: LED
LED_OFF;
gpio_mode_setup(BOOTBUT_GPIO, GPIO_MODE_INPUT,
GPIO_PUPD_NONE, BOOTBUT_PIN); // bat: button (has ext pull-down)
gpio_mode_setup(GPIOB, GPIO_MODE_OUTPUT,
GPIO_PUPD_NONE, GPIO3); // serplus: P-FET
gpio_set_output_options(GPIOB, GPIO_OTYPE_OD, GPIO_OSPEED_LOW, GPIO3);
usart_dtr_rts_serplus_setup();
// serplus: button (int pull-up)
gpio_mode_setup(EXTBUT_GPIO, GPIO_MODE_INPUT,
GPIO_PUPD_PULLUP, EXTBUT_PIN);
extbut_time = ticks;
extbut_state = EXTBUT_PRESSED;
extbut_laststate = extbut_state;
extbut_changed = 0;
extbut_lastchange = extbut_time;
extbut_acted = 0;
}
#define DEBOUNCE_MS 50
static uint8_t service_extbut(void) {
static uint8_t pinval;
pinval = EXTBUT_PRESSED;
if(ticks - extbut_lastchange < DEBOUNCE_MS) {
extbut_time = ticks;
extbut_changed = 0;
return extbut_state;
} else {
extbut_laststate = extbut_state;
extbut_state = pinval;
extbut_time = ticks;
if(extbut_state != extbut_laststate) {
extbut_lastchange = ticks;
extbut_changed = 1;
} else {
extbut_changed = 0;
}
return extbut_state;
}
}
// }}}
// {{{ WS2812
/**************************************************
******************** WS2812 **********************
**************************************************/
#ifdef HAVE_NEOPIX
// maximum is at about 4000
#define LED_COUNT 1
// minimum ID offset is 0x100 (first ID byte mustn't be 0x00)
#define ID_OFFSET 0xA000
// for the purposes of computing the delays
#define CPU_MHZ 48
#define TICK_NS (1000/CPU_MHZ)
#define WS0 (350 / TICK_NS)
#define WS1 (800 / TICK_NS)
#define WSP (1300 / TICK_NS)
#define WSL (20000 / TICK_NS)
#define DMA_BANK_SIZE 2 * 8 * 3 // 2 = number of LEDs; 8*3 = bits*colours
#define DMA_SIZE (DMA_BANK_SIZE*2)
static uint8_t dma_data[DMA_SIZE];
static volatile uint32_t led_data[LED_COUNT];
static volatile uint32_t led_cur = 0;
static void pwm_setup(void) {
// Configure GPIOs: OUT=PA7
gpio_mode_setup(GPIOA, GPIO_MODE_AF,
GPIO_PUPD_NONE, GPIO7 );
gpio_set_af(GPIOA, GPIO_AF1, GPIO7 );
timer_reset(TIM3);
timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
timer_disable_oc_output(TIM3, TIM_OC2);
timer_set_oc_mode(TIM3, TIM_OC2, TIM_OCM_PWM1);
timer_disable_oc_clear(TIM3, TIM_OC2);
timer_set_oc_value(TIM3, TIM_OC2, 0);
timer_enable_oc_preload(TIM3, TIM_OC2);
timer_set_oc_polarity_high(TIM3, TIM_OC2);
timer_enable_oc_output(TIM3, TIM_OC2);
timer_set_dma_on_update_event(TIM3);
timer_enable_irq(TIM3, TIM_DIER_UDE); // in fact, enable DMA on update
timer_enable_preload(TIM3);
timer_continuous_mode(TIM3);
timer_set_period(TIM3, WSP);
timer_enable_counter(TIM3);
}
static void populate_dma_data(uint8_t *dma_data_bank) {
for(int i=0; i<DMA_BANK_SIZE;) {
led_cur = led_cur % (LED_COUNT+3);
if(led_cur < LED_COUNT) {
uint32_t v = led_data[led_cur];
for(int j=0; j<24; j++) {
dma_data_bank[i++] = (v & 0x800000) ? WS1 : WS0;
v <<= 1;
}
} else {
for(int j=0; j<24; j++) {
dma_data_bank[i++] = 0;
}
}
led_cur++;
}
}
static void dma_int_enable(void) {
// SPI1 TX on DMA1 Channel 3
nvic_set_priority(NVIC_DMA1_CHANNEL2_3_IRQ, 0);
nvic_enable_irq(NVIC_DMA1_CHANNEL2_3_IRQ);
}
/* Not used in this example
static void dma_int_disable(void) {
nvic_disable_irq(NVIC_DMA1_CHANNEL2_3_IRQ);
}
*/
static int timer_dma(uint8_t *tx_buf, int tx_len)
{
dma_int_enable();
// Reset DMA channels
dma_channel_reset(DMA1, DMA_CHANNEL3);
// Set up tx dma
dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&TIM_CCR2(TIM3));
dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)tx_buf);
dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len);
dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_32BIT);
dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
dma_enable_circular_mode(DMA1, DMA_CHANNEL3);
dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);
dma_enable_half_transfer_interrupt(DMA1, DMA_CHANNEL3);
dma_enable_channel(DMA1, DMA_CHANNEL3);
return 0;
}
// SPI transmit completed with DMA
void dma1_channel2_3_isr(void)
{
if ((DMA1_ISR & DMA_ISR_TCIF3) != 0) {
DMA1_IFCR |= DMA_IFCR_CTCIF3;
populate_dma_data(&dma_data[DMA_BANK_SIZE]);
}
if ((DMA1_ISR & DMA_ISR_HTIF3) != 0) {
DMA1_IFCR |= DMA_IFCR_CHTIF3;
populate_dma_data(dma_data);
}
}
static void ws2812_pre(void) {
memset(dma_data, 0, DMA_SIZE);
memset((void*)led_data, 0, LED_COUNT*sizeof(*led_data));
//populate_dma_data(dma_data);
//populate_dma_data(&dma_data[DMA_BANK_SIZE]);
timer_dma(dma_data, DMA_SIZE);
}
static void neopix_green(uint8_t intens) {
led_data[0] = (led_data[0]&0x00FFFF)|(intens<<16);
}
static void neopix_red(uint8_t intens) {
led_data[0] = (led_data[0]&0xFF00FF)|(intens<<8);
}
static void neopix_blue(uint8_t intens) {
led_data[0] = (led_data[0]&0xFFFF00)|(intens);
}
#endif // HAVE_NEOPIX
// }}}
// {{{ usart
#ifdef HAVE_MODES
// global modes for USART
#define MODE_SERPLUS 1
#define MODE_RAW 2
#endif // HAVE_MODES
static void usart_set_serplus_params(void) {
usart_set_baudrate(USART1, usart_serplus_baudrate);
usart_set_databits(USART1, usart_serplus_databits);
usart_set_stopbits(USART1, usart_serplus_stopbits);
usart_set_parity(USART1, usart_serplus_parity);
usart_set_flow_control(USART1, usart_serplus_flowcontrol);
}
static void usart_setup(void) {
// Initialize input and output ring buffers.
ring_init(&input_ring, input_ring_buffer, BUFFER_SIZE);
ring_init(&output_ring, output_ring_buffer, BUFFER_SIZE);
// Disable the USART, in case this gets called more than once
usart_disable(USART1);
// Enable the USART1 interrupt.
nvic_enable_irq(NVIC_USART1_IRQ);
// Setup PA9 pin for USART1 transmit.
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9);
gpio_set_af(GPIOA, GPIO_AF1, GPIO9);
// Setup PA10 pin for USART1 receive.
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO10); // weak pull-up avoids picking up noise
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO10);
gpio_set_output_options(GPIOA, GPIO_OTYPE_OD, GPIO_OSPEED_HIGH, GPIO10);
gpio_set_af(GPIOA, GPIO_AF1, GPIO10);
// Setup UART parameters.
usart_serplus_baudrate = 115200;
usart_serplus_databits = 8;
usart_serplus_stopbits = USART_STOPBITS_1;
usart_serplus_parity = USART_PARITY_NONE;
usart_serplus_flowcontrol = USART_FLOWCONTROL_NONE;
usart_set_serplus_params();
usart_set_mode(USART1, USART_MODE_TX_RX);
// Enable USART1 Receive interrupt.
USART_CR1(USART1) |= USART_CR1_RXNEIE;
// Finally enable the USART.
usart_enable(USART1);
}
// telnet escape codes and special values:
enum {
IAC=255, WILL=251, SB=250, SE=240,
CPO=44, SETPAR=3, SETCTL=5,
PAR_NONE=1, PAR_ODD=2, PAR_EVEN=3,
DTR_ON=8, DTR_OFF=9, RTS_ON=11, RTS_OFF=12,
};
void usart1_isr(void)
{
// Check if we were called because of RXNE.
if (((USART_CR1(USART1) & USART_CR1_RXNEIE) != 0) &&
((USART_ISR(USART1) & USART_ISR_RXNE) != 0)) {
// Retrieve the data from the peripheral.
uint8_t c = usart_recv(USART1);
ring_write_ch(&input_ring, c);
// Indicate that we got data.
#ifdef HAVE_NEOPIX
neopix_green(c>>2);
#else // ! HAVE_NEOPIX
LED_TOGGLE;
#endif // HAVE_NEOPIX
#ifdef HAVE_MODES
if( usart_mode == MODE_SERPLUS ) {
#endif // HAVE_MODES
// telnet: escape the escape character, i.e. send it twice
if (c == IAC)
ring_write_ch(&input_ring, c);
#ifdef HAVE_MODES
}
#endif // HAVE_MODES
}
// Check if we were called because of TXE.
if (((USART_CR1(USART1) & USART_CR1_TXEIE) != 0) &&
((USART_ISR(USART1) & USART_ISR_TXE) != 0)) {
int32_t data = ring_read_ch(&output_ring, NULL);
if (data == -1) {
// Disable the TXE interrupt, it's no longer needed.
USART_CR1(USART1) &= ~USART_CR1_TXEIE;
} else {
#ifdef HAVE_MODES
if( usart_mode == MODE_SERPLUS ) {
#endif // HAVE_MODES
// state machine to decode telnet request before sending it on
static int state = 0;
switch (state) {
default: // default state
if (data == IAC)
state = 1;
else
usart_send(USART1, data);
break;
case 1: // IAC seen
state = 0;
if (data == IAC)
usart_send(USART1, data);
else
state = data == SB ? 3 : data >= WILL ? 2 : 0;
break;
case 2: // IAC, WILL (or WONT/DO/DONT) seen
state = 0;
break;
case 3: // IAC, SB seen
state = data == CPO ? 4 : 5;
break;
case 4: // IAC, SB, CPO seen
state = data == SETPAR ? 7 :
data == SETCTL ? 8 : 5;
break;
case 5: // wait for IAC + SE
if (data == IAC)
state = 6;
break;
case 6: // wait for SE
if (data != IAC)
state = data == SE ? 0 : data == SB ? 3 : 5;
break;
case 7: // set parity
state = 5;
switch (data) {
case PAR_NONE:
usart_serplus_databits = 8;
usart_serplus_parity = USART_PARITY_NONE;
usart_disable(USART1);
usart_set_serplus_params();
usart_enable(USART1); break;
case PAR_ODD:
usart_serplus_databits = 9;
usart_serplus_parity = USART_PARITY_ODD;
usart_disable(USART1);
usart_set_serplus_params();
usart_enable(USART1); break;
case PAR_EVEN:
usart_serplus_databits = 9;
usart_serplus_parity = USART_PARITY_EVEN;
usart_disable(USART1);
usart_set_serplus_params();
usart_enable(USART1); break;
}
break;
case 8: // set control
state = 5;
switch (data) {
case DTR_ON:
gpio_clear(DTR_GPIO, DTR_PIN);
break;
case DTR_OFF:
gpio_set(DTR_GPIO, DTR_PIN);
break;
case RTS_ON:
gpio_clear(RTS_GPIO, RTS_PIN);
break;
case RTS_OFF:
gpio_set(RTS_GPIO, RTS_PIN);
break;
}
break;
}
#ifdef HAVE_MODES
} else if( usart_mode == MODE_RAW ) {
usart_send(USART1, data);
}
#endif // HAVE_MODES
}
}
}
// }}}
// {{{ systick
static void systick_setup(void)
{
systick_set_clocksource(STK_CSR_CLKSOURCE_EXT);
// clear counter so it starts right away
STK_CVR = 0;
systick_set_reload((rcc_ahb_frequency/8000)-1); // every ms
systick_counter_enable();
systick_interrupt_enable();
}
void sys_tick_handler(void)
{
++ticks;
}
// }}}
// {{{ USB serial
static const struct usb_device_descriptor dev = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = 0x0200,
.bDeviceClass = USB_CLASS_CDC,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = 64,
.idVendor = 0x0483,
.idProduct = 0x5740,
.bcdDevice = 0x0200,
.iManufacturer = 1,
.iProduct = 2,
.iSerialNumber = 3,
.bNumConfigurations = 1,
};
/*
* This notification endpoint isn't implemented. According to CDC spec its
* optional, but its absence causes a NULL pointer dereference in Linux
* cdc_acm driver.
*/
static const struct usb_endpoint_descriptor comm_endp[] = {{
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x83,
.bmAttributes = USB_ENDPOINT_ATTR_INTERRUPT,
.wMaxPacketSize = 16,
.bInterval = 255,
}};
static const struct usb_endpoint_descriptor data_endp[] = {{
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x01,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}, {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0x82,
.bmAttributes = USB_ENDPOINT_ATTR_BULK,
.wMaxPacketSize = 64,
.bInterval = 1,
}};
static const struct {
struct usb_cdc_header_descriptor header;
struct usb_cdc_call_management_descriptor call_mgmt;
struct usb_cdc_acm_descriptor acm;
struct usb_cdc_union_descriptor cdc_union;
} __attribute__((packed)) cdcacm_functional_descriptors = {
.header = {
.bFunctionLength = sizeof(struct usb_cdc_header_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_HEADER,
.bcdCDC = 0x0110,
},
.call_mgmt = {
.bFunctionLength =
sizeof(struct usb_cdc_call_management_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_CALL_MANAGEMENT,
.bmCapabilities = 0,
.bDataInterface = 1,
},
.acm = {
.bFunctionLength = sizeof(struct usb_cdc_acm_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_ACM,
.bmCapabilities = 0,
},
.cdc_union = {
.bFunctionLength = sizeof(struct usb_cdc_union_descriptor),
.bDescriptorType = CS_INTERFACE,
.bDescriptorSubtype = USB_CDC_TYPE_UNION,
.bControlInterface = 0,
.bSubordinateInterface0 = 1,
},
};
static const struct usb_interface_descriptor comm_iface[] = {{
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bAlternateSetting = 0,
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_CDC,
.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM,
.bInterfaceProtocol = USB_CDC_PROTOCOL_AT,
.iInterface = 0,
.endpoint = comm_endp,
.extra = &cdcacm_functional_descriptors,
.extralen = sizeof(cdcacm_functional_descriptors),
}};
static const struct usb_interface_descriptor data_iface[] = {{
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 1,
.bAlternateSetting = 0,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_DATA,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = 0,
.endpoint = data_endp,
}};
static const struct usb_interface ifaces[] = {{
.num_altsetting = 1,
.altsetting = comm_iface,
}, {
.num_altsetting = 1,
.altsetting = data_iface,
}};
static const struct usb_config_descriptor config = {
.bLength = USB_DT_CONFIGURATION_SIZE,
.bDescriptorType = USB_DT_CONFIGURATION,
.wTotalLength = 0,
.bNumInterfaces = 2,
.bConfigurationValue = 1,
.iConfiguration = 0,
.bmAttributes = 0x80,
.bMaxPower = 0x32,
.interface = ifaces,
};
static char serial_no[9] = "killbill";
static const char *usb_strings[] = {
"JeeLabs",
"SerPlus",
serial_no,
};
// Buffer to be used for control requests.
uint8_t usbd_control_buffer[128];
static int cdcacm_control_request(usbd_device *usbd_dev, struct usb_setup_data *req, uint8_t **buf,
uint16_t *len, void (**complete)(usbd_device *usbd_dev, struct usb_setup_data *req))
{
(void)complete;
#ifndef HAVE_MODES
(void)buf;
#endif // ! HAVE_MODES
(void)usbd_dev;
switch (req->bRequest) {
case USB_CDC_REQ_SET_CONTROL_LINE_STATE: {
#ifdef HAVE_MODES
if( usart_mode == MODE_RAW ) {
if(req->wValue & (1 << 0)) { // dtr set
gpio_clear(DTR_GPIO, DTR_PIN);
} else {
gpio_set(DTR_GPIO, DTR_PIN);
}
//if(req->wValue & (1 << 1)) { // rts set
//}
}
#else // HAVE_MODES
// original code from SerPlus:
/*
* This Linux cdc_acm driver requires this to be implemented
* even though it's optional in the CDC spec, and we don't
* advertise it in the ACM functional descriptor.
*/
char local_buf[10];
struct usb_cdc_notification *notif = (void *)local_buf;
// We echo signals back to host as notification.
notif->bmRequestType = 0xA1;
notif->bNotification = USB_CDC_NOTIFY_SERIAL_STATE;
notif->wValue = 0;
notif->wIndex = 0;
notif->wLength = 2;
local_buf[8] = req->wValue & 3;
local_buf[9] = 0;
// usbd_ep_write_packet(0x83, buf, 10);
#endif // HAVE_MODES
return 1;
}
case USB_CDC_REQ_SET_LINE_CODING: {
if (*len < sizeof(struct usb_cdc_line_coding))
return 0;
#ifdef HAVE_MODES
if( usart_mode == MODE_RAW ) {
struct usb_cdc_line_coding *coding;
coding = (struct usb_cdc_line_coding *)*buf;
uint8_t databits;
usart_disable(USART1);
usart_set_baudrate(USART1,coding->dwDTERate);
//do the databits ourselves, because the routine isn't yet adjusted to F072 (M1 reg)
//usart_set_databits(USART1,coding->bDataBits);
databits = coding->bDataBits;
USART_CR1(USART1) &= ~(USART_CR1_M0|USART_CR1_M1);
// at least 'stm32flash' expects the parity to be an extra bit in
// addition to these; but the MCU includes them in "databits"
// not sure what the actual USB_CDC standard is
if((databits < 9) && (coding->bParityType == USB_CDC_EVEN_PARITY ||
coding->bParityType == USB_CDC_ODD_PARITY)) {
databits++;
}
switch(databits) {
case 7: USART_CR1(USART1) |= USART_CR1_M1; break;
case 9: USART_CR1(USART1) |= USART_CR1_M0; break;
}
switch(coding->bCharFormat) {
case USB_CDC_1_STOP_BITS: usart_set_stopbits(USART1, USART_STOPBITS_1); break;
case USB_CDC_1_5_STOP_BITS: usart_set_stopbits(USART1, USART_STOPBITS_1_5); break;
case USB_CDC_2_STOP_BITS: usart_set_stopbits(USART1, USART_STOPBITS_2); break;
}
switch(coding->bParityType) {
case USB_CDC_NO_PARITY: usart_set_parity(USART1, USART_PARITY_NONE); break;
case USB_CDC_ODD_PARITY: usart_set_parity(USART1, USART_PARITY_ODD); break;
case USB_CDC_EVEN_PARITY: usart_set_parity(USART1, USART_PARITY_EVEN); break;
}
usart_enable(USART1);
}
#endif // HAVE_MODES
return 1;
}
}
return 0;
}
static void cdcacm_data_rx_cb(usbd_device *usbd_dev, uint8_t ep)
{
(void)ep;
(void)usbd_dev;
// back pressure: don't read the packet if there's not enough room in ring
if ((output_ring.begin - (output_ring.end+1)) % BUFFER_SIZE <= 64)
return;
uint8_t buf[64];
int len = usbd_ep_read_packet(usbd_dev, 0x01, buf, sizeof buf);
if (len) {
// Retrieve the data from the peripheral.
ring_write(&output_ring, buf, len);
// Enable usart transmit interrupt so it sends out the data.
USART_CR1(USART1) |= USART_CR1_TXEIE;
}
}
static void cdcacm_set_config(usbd_device *usbd_dev, uint16_t wValue)
{
(void)wValue;
(void)usbd_dev;
usbd_ep_setup(usbd_dev, 0x01, USB_ENDPOINT_ATTR_BULK, 64, cdcacm_data_rx_cb);
usbd_ep_setup(usbd_dev, 0x82, USB_ENDPOINT_ATTR_BULK, 64, NULL);
usbd_ep_setup(usbd_dev, 0x83, USB_ENDPOINT_ATTR_INTERRUPT, 16, NULL);
usbd_register_control_callback(
usbd_dev,
USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE,
USB_REQ_TYPE_TYPE | USB_REQ_TYPE_RECIPIENT,
cdcacm_control_request);
}
static char *get_dev_unique_id(char *s)
{
#if defined(STM32F4) || defined(STM32F2)
# define UNIQUE_SERIAL_R 0x1FFF7A10
# define FLASH_SIZE_R 0x1fff7A22
#elif defined(STM32F3)
# define UNIQUE_SERIAL_R 0x1FFFF7AC
# define FLASH_SIZE_R 0x1fff77cc
#elif defined(STM32L1)
# define UNIQUE_SERIAL_R 0x1ff80050
# define FLASH_SIZE_R 0x1FF8004C
#elif defined(STM32F0)
# define UNIQUE_SERIAL_R 0x1FFFF7AC
# define FLASH_SIZE_R 0x1FFFF7CC
#else
# define UNIQUE_SERIAL_R 0x1FFFF7E8;
# define FLASH_SIZE_R 0x1ffff7e0
#endif
volatile uint32_t *unique_id_p = (volatile uint32_t *)UNIQUE_SERIAL_R;
uint32_t unique_id = *unique_id_p ^ // was "+" in original BMP
*(unique_id_p + 1) ^ // was "+" in original BMP
*(unique_id_p + 2);
int i;
// Calculated the upper flash limit from the exported data
// in theparameter block
//max_address = (*(uint32_t *) FLASH_SIZE_R) <<10;
// Fetch serial number from chip's unique ID
for(i = 0; i < 8; i++) {
s[7-i] = ((unique_id >> (4*i)) & 0xF) + '0';
}
for(i = 0; i < 8; i++)
if(s[i] > '9')
s[i] += 'A' - '9' - 1;
s[8] = 0;
return s;
}
// }}}
// {{{ ADC
/**************************************************
********************* ADC ************************
**************************************************/
#ifdef HAVE_ADC
static void adc_setup(void) {
gpio_mode_setup(GPIOA, GPIO_MODE_ANALOG,
GPIO_PUPD_NONE, GPIO4); // serplus: detect pwr
//gpio_mode_setup(GPIOA, GPIO_MODE_ANALOG, GPIO_PUPD_NONE, GPIO0);
//gpio_mode_setup(GPIOA, GPIO_MODE_ANALOG, GPIO_PUPD_NONE, GPIO1);
adc_power_off(ADC1);
adc_set_clk_source(ADC1, ADC_CLKSOURCE_ADC);
adc_calibrate(ADC1);
adc_set_operation_mode(ADC1, ADC_MODE_SCAN);
adc_disable_external_trigger_regular(ADC1);
adc_set_right_aligned(ADC1);
adc_enable_temperature_sensor();
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPTIME_071DOT5);
uint8_t channel_array[] = { 4 }; // which channels to enable // ADC_CHANNEL_TEMP
adc_set_regular_sequence(ADC1, 1, channel_array); // mid param = num_of_chan
adc_set_resolution(ADC1, ADC_RESOLUTION_12BIT);
adc_disable_analog_watchdog(ADC1);
adc_power_on(ADC1);
// Wait for ADC starting up.
int i;
for (i = 0; i < 800000; i++) { // Wait a bit.
__asm__("nop");
}
}
#endif // HAVE_ADC
// }}}
// {{{ main
int main(void) {
clock_setup();
systick_setup();
gpio_setup();
#ifdef HAVE_ADC
uint16_t volts; // ADC reading (PA4, 10k/10k divider to PWR_OUT)
adc_setup();
#endif // HAVE_ADC
#ifdef HAVE_MODES
// begin in serplus mode
usart_mode = MODE_SERPLUS;
#endif // HAVE_MODES
#ifdef HAVE_NEOPIX
// WS2812 setup
ws2812_pre();
pwm_setup();
#endif // HAVE_NEOPIX
FET_ON;
for (int i = 0; i < 1000000; i++)
__asm__("");
get_dev_unique_id(serial_no);
usbd_device *usbd_dev = usbd_init(&st_usbfs_v2_usb_driver, &dev, &config,
usb_strings, 3, usbd_control_buffer, sizeof(usbd_control_buffer));
usbd_register_set_config_callback(usbd_dev, cdcacm_set_config);
for (int i = 0; i < 1000000; i++)
__asm__("");
usart_setup(); // late config to allow USB setup to complete first
LED_TOGGLE;
while (1) {
// poll USB while waiting for 2 ms to elapse
// it takes 2.7 ms to send 64 bytes at 230400 baud 8N1
for (int i = 0; i < 2; ++i) {
uint32_t lastTick = ticks;
while (ticks == lastTick)
usbd_poll(usbd_dev);
}
// put up to 64 pending bytes into the USB send packet buffer
uint8_t buf[64];
int len = ring_read(&input_ring, buf, sizeof buf);
if (len > 0) {
usbd_ep_write_packet(usbd_dev, 0x82, buf, len);
//buf[len] = 0;
}
#ifdef HAVE_ADC
// ADC
adc_start_conversion_regular(ADC1);
while (!(adc_eoc(ADC1)));
volts = adc_read_regular(ADC1);
if( volts >= 0x7A0 && volts <= 0x890 ) { // around 3v3
#ifdef HAVE_NEOPIX
neopix_red(0x06);
#endif // HAVE_NEOPIX
} else if( volts >= 0xc00 && volts <= 0xd00 ) { // around 5v
#ifdef HAVE_NEOPIX
neopix_red(0x33);
#endif // HAVE_NEOPIX
} else if( volts <= 0x100 ) { // around 0v
#ifdef HAVE_NEOPIX
neopix_red(0);
#endif // HAVE_NEOPIX
} else {
#ifdef HAVE_NEOPIX
neopix_red(0xFF);
#endif // HAVE_NEOPIX
}
#endif // HAVE_ADC
// buttons
service_extbut();
if(extbut_state == 1 && (extbut_time - extbut_lastchange) >= 1000) { // long press
if( extbut_acted == 0) {
#ifdef HAVE_MODES
if(usart_mode == MODE_SERPLUS) { // switching to RAW
usart_mode = MODE_RAW;
usart_dtr_rts_raw_setup();
} else { // switching to SERPLUS
usart_mode = MODE_SERPLUS;
usart_dtr_rts_serplus_setup();
usart_disable(USART1);
usart_set_serplus_params();
usart_enable(USART1);
}
#endif // HAVE_MODES
extbut_acted = 1;
}
} else {
extbut_acted = 0;
}
#ifdef HAVE_MODES
#ifdef HAVE_NEOPIX
neopix_blue(usart_mode == MODE_SERPLUS ? 0 : 0x20);
#endif // HAVE_NEOPIX
#endif // HAVE_MODES
}
}
// }}}
// vim: shiftwidth=4:tabstop=4:noexpandtab:foldmethod=marker: