|
6 years ago | |
---|---|---|
arduino | 6 years ago | |
avr | 6 years ago | |
firmware_binaries | 6 years ago | |
talk_to_sha204 | 6 years ago | |
.gitignore | 6 years ago | |
LICENSE | 6 years ago | |
README.md | 6 years ago |
Firmware for ATMEL chips to communicate with ATSHA204 chip interactively over Serial. Sources are supplied in two forms:
Along with this, a python script talk_to_sha204.py
is provided to
access some of the functionality of the ATSHA204 chip, talking to
it via the firmware above (in a binary mode), a-la hashlet.
Please see the READMEs in the individual subdirectories for some info on how to use them.
The original impetus to write this stuff for me was that I had a couple of ATSHA204 breakout boards from Sparkfun and I wanted to play with them outside Arduino, using just avr-gcc and LUFA, on some USB sticks with ATMEL chips. Here are pics with two of them:
And matrixstorm’s AVR stick with the same Sparkfun’s ATSHA breakout:
So, what can be ATSHA204 used for? Well, it performs hashing (SHA256) and it can securely store “keys” (32 bytes long blocks of data).
The important point (for me) is that to verify that a “signature” (hash, MAC) was generated on a particular ATSHA requires knowing all the “secrets” that were used to generate the signature. This works fine for Client/Server-like situations: “Client” ATSHA generates a signature for, say, a file, (e.g. on a local computer), which is then sent to “Server” for verification. However the “Server” has to know the “secret keys” on ATSHA that were used in the signature computation; so either the “Server” has a copy of the keys stored in ATSHA, or there’s another ATSHA on the “Server” with the keys.
This kind of thing can be used for instance to roll one’s own authentication service a-la YubiKey.
What I wanted to use it for is to securely store encryption keys locally, for a “two-factor key storage”. This is also possible to do: user enters a password, this is passed to ATSHA which generates a hash of the user’s password, together with one of its “secret keys”. This hash is then used as an encryption key. So to obtain the encryption key, one has to know the password and have the ATSHA along.
Please see the READMEs in the individual subdirectories for more info about the various parts of the project, as well as credits.
My code is (c) flabbergast. MIT license (see LICENSE file). Portions of the code come from LUFA demos, this is licensed by LUFA’s license. The original code from SHA204 library is licensed by Apache V2.0 license.